<form id="f3fhb"><listing id="f3fhb"><mark id="f3fhb"></mark></listing></form>

    <thead id="f3fhb"><var id="f3fhb"></var></thead>

    <sub id="f3fhb"><var id="f3fhb"></var></sub>

    <sub id="f3fhb"><var id="f3fhb"></var></sub>

    <address id="f3fhb"></address>
      <thead id="f3fhb"><dfn id="f3fhb"></dfn></thead>
        <form id="f3fhb"><dfn id="f3fhb"><menuitem id="f3fhb"></menuitem></dfn></form>
            <address id="f3fhb"><dfn id="f3fhb"><mark id="f3fhb"></mark></dfn></address>
                |本期目錄/Table of Contents|

                [1]李西振,管典安.調和擬共形Bloch函數的性質[J].廈門理工學院學報,2020,(5):93-96.[doi:1019697/jcnki16734432202005015]
                 LI Xizhen,GUAN Dian an.Some Properties of Harmonic Quasiconformal BlochType Mapping[J].Journal of JOURNAL OF XIAMEN,2020,(5):93-96.[doi:1019697/jcnki16734432202005015]
                點擊復制

                調和擬共形Bloch函數的性質(PDF/HTML)
                分享到:

                《廈門理工學院學報》[ISSN:1673-4432/CN:35-1289/Z]

                卷:
                期數:
                2020年第5期
                頁碼:
                93-96
                欄目:
                應用數理科學
                出版日期:
                2020-10-30

                文章信息/Info

                Title:
                Some Properties of Harmonic Quasiconformal BlochType Mapping
                文章編號:
                16734432(2020)05009304
                作者:
                李西振管典安
                廈門工學院計算機與人工智能學院, 福建 廈門 361021
                Author(s):
                LI XizhenGUAN Dian an
                College of Computer and Artificial Intelligence,Xiamen Institute of Technology,Xiamen 361021,China
                關鍵詞:
                調和擬共形函數Bloch型函數界限估計
                Keywords:
                harmonic quasiconformal mappingBlochtype functionbound estimate
                分類號:
                O17455
                DOI:
                1019697/jcnki16734432202005015
                文獻標志碼:
                A
                摘要:
                將調和Bloch型函數的定義應用到調和擬共形函數,在給出調和擬共形Bloch函數定義的基礎上,分析調和擬共形函數線性和復合性質。研究提出調和擬共形Bloch型函數的判別法則, 并給出它的一個判定定理以及β(f)的界限估計。
                Abstract:
                We apply the definition of harmonic Blochtype functions to harmonic quasiconformal functions,and obtain the definition of harmonic quasiconformal Blochtype functions.By establishing the linear and composite properties of harmonic quasiconformal mapping,we give a criterion of them and a bound estimate of β(f).

                參考文獻/References:

                [1] POMMERENKE C.On Bloch functions[J].Journal of London Mathematical Society,1970,2:689695. [2] ANDERSON J M,CLUNIE J,POMMERENKE C.On Bloch functions and normal functions[J].Journal of Reine Angew Mathematical,1974,270:1237. [3] ZHU K.Operator theory in function spaces[M].New York:Marcel Dekker Inc, 1990:120. [4] PAVLOVIC M.On the HollandWalsh characterization of Bloch functions[J].Proc Edinb Mathematical Society,2008,51(2):439441. [5] EFRAIMIDIS I ,GAONA J ,HERNNDEZ R.On harmonic Blochtype mappings[J].Complex Var Elliptic,2017,62(8):1 0811 092. [6] LEWY H.On the nonvanishing of the Jacobian in certain onetoone mappings[J].Bulletin of the American Mathematical Society,1936,42(10):689693. [7] AHLFORS L V,EARLE C J.Lectures on quasiconformal mappings[M].2nd ed.[S.l.]:American Mathematical Society,1966:125. [8] DANIKAS N.Some Banach spaces of analytic functions,function spaces and complex analysis[J].University of Joensuu Department of Mathematical Rep,1997,2:935. [9] POMMERENKE C.Boundary behaviour of conformal maps[M].Berlin:SpringerVerlag,1992:115. [10] SEIDEL J ,WALSH L.On the derivatives of functions analytic in the unit circle and their radii of univalence and of pvalence[J].Transactions American Mathematical Society,1942,52:128216. [11] HERNNDEZ R,MARTIN M J.PreSchwarzian and Schwarzian derivatives of harmonic mappings[J].Journal of Geometric Analysis,2015,25(1):6491. [12] BEARDON A,MINDA D.The hyperbolic metric and geometric function theory[J].Quasiconformal Mappings and Their Applications,2007:956. [13] CHEN S ,PONNUSAMY S.John disks and Kquasiconformal harmonic mappings[J].Journal of Geometric Analysis,2017,27(2):1 4681 488.

                相似文獻/References:

                備注/Memo

                備注/Memo:
                收稿日期:20200820修回日期:20201020 基金項目:福建省中青年教師教育科研項目(JAT190959) 廈門工學院校級科研項目(KYT2019022) 通信作者:李西振,男,助教,碩士,研究方向為函數論,Email:741296642@qq.com。
                更新日期/Last Update:
                摇骰子玩法